Research Article

Maximal stability limits in adolescents with Tourette syndrome

Mariève Blanchet*, François Prince, Martin Lemay, Sylvain Chouinard and Julie Messier

Published: 30 January, 2021 | Volume 4 - Issue 1 | Pages: 013-022

We explored if adolescents with Gilles de la Tourette syndrome (GTS) had functional postural control impairments and how these deficits are linked to a disturbance in the processing and integration of sensory information. We evaluated the displacements of the center of pressure (COP) during maximal leaning in four directions (forward, backward, rightward, leftward) and under three sensory conditions (eyes open, eyes closed, eyes closed standing on foam). GTS adolescents showed deficits in postural stability and in lateral postural adjustments but they had similar maximal COP excursion than the control group. The postural performance of the GTS group was poorer in the eyes open condition (time to phase 1 onset, max-mean COP). Moreover, they displayed a poorer ability to maintain the maximum leaning position under the eyes open condition during mediolateral leaning tasks. By contrast, during forward leaning, they showed larger min-max ranges than control subjects while standing on the foam with the eyes closed. Together, these findings support the idea that GTS produces subclinical postural control deficits. Importantly, our results suggest that postural control disorders in GTS are highly sensitive to voluntary postural leaning tasks which have high demand for multimodal sensory integration.

Read Full Article HTML DOI: 10.29328/journal.japch.1001024 Cite this Article Read Full Article PDF


  1. Eddy CM, Cavanna AE, Gulisano M, Calì P, Robertson MM, et al. The effects of comorbid obsessive-compulsive disorder and attention-deficit hyperactivity disorder on quality of life in tourette syndrome. J Neuropsychiatry Clin Neurosci Fall. 2012; 24: 458-462. PubMed: https://pubmed.ncbi.nlm.nih.gov/23224452/
  2. Hirschtritt ME, Lee PC, Pauls DL, Dion Y, Grados MA, et al. Tourette Syndrome Association International Consortium for Genetics, et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry 2015; 72: 325-333. PubMed: https://pubmed.ncbi.nlm.nih.gov/25671412/
  3. Mink JW. Basal ganglia dysfunction in Tourette’s syndrome: A New Hypothesis. Pediatr Neurol. 2001; 25: 190-198. PubMed: https://pubmed.ncbi.nlm.nih.gov/11587872/
  4. Leckman JF, Bloch MH, Smith ME, Larabi D, Hampson M, et al. Neurobiological substrates of Tourette's disorder. J Child Adolesc Psychopharmacol. 2010; 20: 237-247. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958453/
  5. Worbe Y, Malherbe C, Hartmann A, Pélégrini-Issac M, Messé A, et al. Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain. 2012; 135:1937-1946. PubMed: https://pubmed.ncbi.nlm.nih.gov/22434213/
  6. Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol. 2014; 13: 100-112. PubMed: https://pubmed.ncbi.nlm.nih.gov/24331796/
  7. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF, et al. Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol. 1996; 75: 2334-2343. PubMed: https://pubmed.ncbi.nlm.nih.gov/8793746/
  8. Peterka RJ. Sensorimotor integration in human postural control, J Neurophysiol. 2002; 88: 1097-1118. PubMed: https://pubmed.ncbi.nlm.nih.gov/12205132/
  9. Mancini M, Rocchi L, Horak FB, Chiari L. Effects of Parkinson's disease and levodopa on functional limits of stability. Clin Biomechanics. 2008; 23: 450-458.
  10. Nagy A, Eördegh G, Paróczy Z, Márkus Z, Benedek G, et al. Multisensory integration in the basal ganglia, European J Neuroscience. 2006; 24: 917–924. PubMed: https://pubmed.ncbi.nlm.nih.gov/16930419/
  11. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003; 18: 231-240. PubMed: https://pubmed.ncbi.nlm.nih.gov/12621626/
  12. Tagliabue M, Ferrigno G, Horak F. Effects of Parkinson's disease on proprioceptive control of posture and reaching while standing. Neuroscience. 2009; 158: 1206-1214. PubMed: https://pubmed.ncbi.nlm.nih.gov/19136043/
  13. Blanchet M, Prince F, Chouinard S, Messier J, et al. Postural stability limits in manifest and premanifest Huntington’s disease under different sensory conditions. Neuroscience. 2014; 279: 102-112. PubMed: https://pubmed.ncbi.nlm.nih.gov/25168735/
  14. Tian JR, Herdman SJ, Zee DS, Folstein SE, et al. Postural control in Huntington's disease, Acta Oto-Laryngologica. Supplementum. 1991; 481: 333-336. PubMed: https://pubmed.ncbi.nlm.nih.gov/1833947/
  15. Visser JE, Bloem BR. Role of the basal ganglia in balance control. Neural Plasticity. 2005; 12: 161-174. PubMed: https://pubmed.ncbi.nlm.nih.gov/16097484/
  16. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, et al. Proprioception and motor control in Parkinson's disease. J Motor Behavior. 2009; 41: 543-552. PubMed: https://pubmed.ncbi.nlm.nih.gov/19592360/
  17. Schultz RT, Carter AS, Gladstone M, Scahill L, Leckman JF, et al. Visual-motor integration functioning in children with Tourette syndrome. Neuropsychology. 1998; 12: 134-145. PubMed: https://pubmed.ncbi.nlm.nih.gov/9460741/
  18. Berardelli A, Currà A, Fabbrini G, Gilio F, Manfredi M, et al. Pathophysiology of tics and Tourette syndrome. J Neurol. 2003; 250: 781–787. PubMed: https://pubmed.ncbi.nlm.nih.gov/12883917/
  19. Biermann-Ruben K, Miller A, Franzkowiak S, Finis J, Pollok B, et al. Increased sensory feedback in Tourette syndrome. NeuroImage. 2012; 63: 119-125. PubMed: https://pubmed.ncbi.nlm.nih.gov/22776453/
  20. Georgiou N, Bradshaw JL, Phillips JG, Bradshaw JA, Chiu E, et al. Advance information and movement sequencing in Gilles de la Tourette's syndrome. J Neurol Neurosurg Psychiatry. 1995; 58: 184-191. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1073315/
  21. Neuner I, Arrubla J, Ehlen C, Janouschek H, Nordt C, et al. Fine motor skills in adult Tourette patients are task-dependent, BMC Neurol. 2012; 11: 120-128. PubMed: https://pubmed.ncbi.nlm.nih.gov/23057645/
  22. Lemay M, Termoz N, Lesperance P, Chouinard S, Rouleau GA, et al. Postural control anomalies in children with Tourette syndrome, Experimental Brain Res. 2007; 179: 525-530. PubMed: https://pubmed.ncbi.nlm.nih.gov/17342479/
  23. Liu WY, Ya-Ting H, Lien HY, Wang HS, Wong AM, et al. Deficits in sensory organization for postural stability in children with Tourette syndrome. Clin Neurol Neurosurg. 2015; 129: S36-40. PubMed: https://pubmed.ncbi.nlm.nih.gov/25683311/
  24. Assaiante C. Action and representation of action during childhood and adolescence: A functional approach. Neurophysiologie Clinique/Clinical Neurophysiology. 2011; 42: 43-51. PubMed: https://pubmed.ncbi.nlm.nih.gov/22200341/
  25. Weisman H, Parush S, Apter A, Fennig S, Benaroya-Milshtein N, et al. A study of sensory dysregulation in children with tic disorders. J Neural Transm. 2018; 125: 1077-1085. PubMed: https://pubmed.ncbi.nlm.nih.gov/29473112/
  26. Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017; 21: 23-48. PubMed: https://pubmed.ncbi.nlm.nih.gov/27567276/
  27. Blanchet M, Prince F, Messier J. Development of postural stability limits: anteroposterior and mediolateral postural adjustment mechanisms do not follow the same maturation process, Human Movement Sci. 2019; 63: 164–171. PubMed: https://pubmed.ncbi.nlm.nih.gov/25168735/
  28. Definitions and classification of tic disorders. The Tourette Syndrome Classification Study Group, Archives of neurology. 1993; 50: 1013–1016. PubMed: https://pubmed.ncbi.nlm.nih.gov/8215958/
  29. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, et al. The yale-brown obsessive-compulsive scale. I. Development, use, and reliability. Arch General Psychiatry. 1989; 46: 1006–1011. PubMed: https://pubmed.ncbi.nlm.nih.gov/2684084/
  30. Wu G, Chiang JH. The effects of surface compliance on foot pressure in stance. Gait & Posture. 1996; 4: 122-129.
  31. Riach CL, Starkes JL. Velocity of center of pressure excursions as an indicator of postural control systems in children. Gait & Posture. 1994; 2: 167-72.
  32. Van Wegen EEH, Van Emmerik REA, Riccio GE, et al. Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci. 2002; 21: 61-84. PubMed: https://pubmed.ncbi.nlm.nih.gov/11983434/
  33. Newton RA. Validity of the multi-directional reach test: a practical measure for limits of stability in older adults. J Gerontol A Biol Sci Med Sci. 2001; 56: 248-52. PubMed: https://pubmed.ncbi.nlm.nih.gov/11283199/
  34. Horak FB, Macpherson JM. Balance orientation and equilibrium, (Section 12, Chapter 7). in: J. Shepard, L. Rowell (Eds.), Handbook of physiology. Exercise: Regulation and Integration of Multiple Systems, Oxford University Press. NY. 1996; 255–292.
  35. Cox JH, Seri S, Cavanna AE. Sensory aspects of Tourette syndrome, Neurosci Biobehav Rev. 2018; 88: 170-176. PubMed: https://pubmed.ncbi.nlm.nih.gov/29559228/
  36. Sutherland Owens AN, Miguel EC, Swerdlow NR. Sensory Gating Scales and Premonitory Urges in Tourette Syndrome. Scientific World J. 2011; 22: 736–741. PubMed: https://pubmed.ncbi.nlm.nih.gov/21442151/
  37. Jacobs JV, Horak FB. Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease. Neuroscience. 2006; 141: 999-1009. PubMed: https://pubmed.ncbi.nlm.nih.gov/16713110/
  38. Orth M, Münchau A. Transcranial magnetic stimulation studies of sensorimotor networks in Tourette syndrome. Behav Neurol. 2013; 27: 57-64. PubMed: https://pubmed.ncbi.nlm.nih.gov/23187144/
  39. Desmurget M, Gaveau V, Vindras P, Turner RS, Broussolle E, et al. On-line motor control in patients with Parkinson's disease. Brain. 2004; 127: 1755-1773.
  40. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease. Neuroscience. 2001; 104: 1027-1041. PubMed: https://pubmed.ncbi.nlm.nih.gov/11457588/
  41. Kirshenbaum N, Riach CL, Starkes JL. Non-linear development of postural control and strategy use in young children: a longitudinal study. Experimental Brain Res. 2001; 40: 420-431. PubMed: https://pubmed.ncbi.nlm.nih.gov/11685395/
  42. Farhim CF, Yoon U, Das S, Lyttelton O, Chen J. Somatosensory–motor bodily representation cortical thinning in Tourette: Effects of tic severity. Age and Gender. Cortex. 2010; 46: 750-760.
  43. Hong KE, Ock SM, Kang MH, Kim CE, Bae JN, et al. The segmented regional volumes of the cerebrum and cerebellum in boys with Tourette syndrome. J Korean Med Sci. 2002; 17: 530-536. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3054894/
  44. Miller AM, Bansal R, Hao X, Sanchez-Pena JP, Sobel LJ, et al. Enlargement of Thalamic Nuclei in Tourette Syndrome. Arc General Psychiatry. 2010; 67: 955-964. PubMed: https://pubmed.ncbi.nlm.nih.gov/20819989/
  45. Peterson BS. Neuroimaging studies of Tourette syndrome: a decade of progress. Advances Neurol. 2001; 85: 179-196. PubMed: https://pubmed.ncbi.nlm.nih.gov/11530427/
  46. Sowell ER, Kan E, Yoshii J, Thompson PM, Bansal R, et al. Thinning of sensorimotor cortices in children with Tourette syndrome. Nat Neurosci. 2008; 11: 637-639. PubMed: https://pubmed.ncbi.nlm.nih.gov/18488025/
  47. Franzkowiak S, Pollok B, Biermann-Ruben K, Südmeyer M, Paszek J, et al. Motor-Cortical Interaction in Gilles de la Tourette Syndrome. PLoS One. 2012; 7: e27850. PubMed: https://pubmed.ncbi.nlm.nih.gov/22238571/
  48. Cohen AJ, Leckman JF. Sensory phenomena associated with Gilles de la Tourette’s syndrome. J Clin Psychiatry. 1992; 53: 319–323. PubMed: https://pubmed.ncbi.nlm.nih.gov/1517194/
  49. Evers RA, van de Wetering BJ. A treatment model for motor tics based on a specific tension-reduction technique. J Behav Ther Exp Psychiatry. 1994; 25: 255-260. PubMed: https://pubmed.ncbi.nlm.nih.gov/7852608/
  50. Szejko N, Jakubczyk A, Dunalska A, Janik P. Dystonic tics in patients with Gilles de la Tourette syndrome. Neurol Neurochir Pol. 2019; 53: 335-340. PubMed: https://pubmed.ncbi.nlm.nih.gov/31621889/


Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More